Valvular Stenosis and Regurgitation: Assessment of Severity Helmut Baumgartner Adult Congenital and Valvular Heart Disease Center University of Muenster Germany | | ropean Jaumel of Echocardiagraphy (2009) 10, 1–25
::10.1093/ejechocard/jen303 | 73 pages | |---|--|---| | 5 | European Journal of Echocardiography (2010) 11, 223–2- doi:10.1093/ejechocard/jeq030 | 44 RECOMMENDATIONS | | | European Journal of Echocardiography (2010) 1
doi:10.1093/ejechocard/jeg031 | 11, 207-332 RECOMMENDATIONS | | | F A | n of Echocardiography | | | recommendations fo | or the assessment of valvular
: mitral and tricuspid | ## Assessment of valvular stenosis severity - Peak velocity / peak gradient - Mean gradient (rest / exercise / dobutamine) - Valve area planimetry (MS, AS) continuity equation (AS) pressure half-time (MS) - Indirect signs LVH (AS), RVH (PS) PAP (MS), RVP (PS) ### Assessment of Valvular Stenosis Severity CW Doppler: Measurement of transvalvular velocity Calculation of peak gradient $\Delta P_{peak} = 4v^2$ Calculation of mean gradient $\Delta P_{mean} = \Sigma 4v^2 / N$ Doppler Assessment of Transvalvular Gradient #### **Sources of Error** #### (1) Underestimation of Catheter Gradient: - Inappropriate recording angle - Poor signal quality - Recording "wrong vel." (LVOT) - Lack of technical expertise or appropriate equipment | _ | | | | | | |---|--|--|--|--|--| | | | | | | | | | | | | | | | _ | _ | _ | | | | | | | | | | | | | Doppler Assessment of Transvalvular Gradient **Sources of Error** (2) Overestimation of Catheter Gradient: • Failure to account for an increased subvalvular velocity Gradient Calculation by CW-Doppler **BERNOULLI EQUATION** $p_1 - p_2 = \frac{1}{2} \rho \left(v_2^2 - v_1^2\right) + \rho \int_1^2 \frac{dv}{dt} ds + R \left(\mu y\right)$ Convective Flow Viscous friction $\Delta p = \frac{1}{2} \rho \left(v_2^2 - v_1^2 \right)$ Doppler Assessment of Transvalvular Gradient **Sources of Error** (2) Overestimation of Catheter Gradient: • Failure to account for an increased subvalvular velocity • Inappropriate comparison of different gradients Doppler Assessment of Transvalvular Gradient #### **Sources of Error** #### (2) Overestimation of Catheter Gradient: - Failure to account for an increased subvalvular velocity - Inappropriate comparison of different gradients - Recording the wrong velocity (f.e. mitral regurgitation / aortic stenosis) Recording the Wrong Signal (Aortic Stenosis - Mitral Regurgitation) Different shape and timing! Doppler Assessment of Transvalvular Gradient #### **Sources of Error** #### (2) Overestimation of Catheter Gradient: - Failure to account for an increased subvalvular velocity - Inappropriate comparison of different gradients - Recording the wrong velocity (f.e. mitral regurgitation / aortic stenosis) - Nonrepresentative selection of velocity recording (arrhythmias - tendency to select highest velocities) - Pressure recovery # Pressure Recovery Pressure Pressure Drop Pressure Drop Pressure Drop Turbulent / Viscous Losses Pressure recovery in aortic stenosis p3 - p2 = $1/2 \rho v^2$. 2AVA/AoA. (1 - AVA/AoA) #### | | Units | Formula / Method | Cutoff
for
Severe | Concept | Advantages | Limitations | |--|---------------------------------|--|-------------------------|---|---|--| | AS jet velocity | m/s | Direct measurement | 4.0 | Velocity increases as stenosis severity increase. | Direct measurement of velocity.
Strongest predictor of clinical
outcome. | Correct measurement requires
parallel alignment of ultrasound
beam.
Flow dependent. | | Mean gradient | mm Hg | $\Delta P = \sum 4v^2 / N$ | 40 or
50 | Pressure gradient calculated
from velocity using the
Bernoulli equation | Mean gradient is averaged from
the velocity curve.
Units comparable to invasive
measurements. | Accurate pressure gradients
depend on accurate velocity
data.
Flow dependent | | Continuity
equation valve
area 16, 17, 23 | om² | AVA = (CSA _{LVOT} x VTI _{LVOT})/
VTI _{AV} | 1.0 | Volume flow proximal to and in the stenotic orifice is equal. | Measures effective orifice area.
Feasible in nearly all patients.
Relatively flow independent. | Requires LVOT diameter and
flow velocity data, along with
acrtic velocity. Measurement
error more likely. | | Simplified continuity equation | cm ² | AVA = (CSA _{LVOT} x V _{LVOT})/ V _{AV} | 1.0 | The ratio of LVOT to aortic
velocity is similar to the ratio
of VTIs with native aortic
valve stenosis. | Uses more easily measured velocities instead of VTIs. | Less accurate if shape of
velocity curves is atypical. | | Velocity Ratio | none | VR = Wage
Vau | 0.25 | Effective acrtic valve area expressed as a proportion of the LVOT area. | Doppler-only method. No need to measure LVOT size, less variability than continuity equation. | Limited longitudinal data.
Ignores LVOT size variability
beyond patient size
dependence | | Planimetry of
Anatomic Valve
Area
31.14 | om² | TTE, TEE, 30-echo | 1.0 | Anatomic (geometric) cross-
sectional area of the acrtic
valve crifice as measured by
2D or 3D echo. | Useful if Doppler measurements
are unavailable. | Contraction coefficient
(anatomic / effective valve area
may be variable. Difficult with
severe valve calcification. | | LV % Stroke
Work Loss | % | $^{9}kSWZ = \frac{\overline{\Delta P}}{\overline{\Delta P} + SBP} \cdot 100$ | 25 | Work of the LV wasted each
systole for flow to cross the
aortic valve, expressed as a
% of total systolic work | Very easy to measure. Related to outcome in one longitudinal study. | Flow-dependent, Limited
longitudinal data | | Recovered
Pressure
Gradient | mm Hg | $P_{dind} - P_{rr} = 4 \cdot \mathbf{v}^2 \cdot 2 \cdot \frac{AYA}{AA} \left(1 - \frac{AYA}{AA} \right)$ | | Pressure difference between
the LV and the acrts, slightly
distal to the vena contracts,
where distal pressure has
increased. | Closer to the global hemodynamic
burden caused by AS in terms of
adaptation of the cardiovascular
system. Relevant at high flow
states and in patients with small
ascending acrts. | Introduces complexity and
variability related to the
measurement of the ascending
aorta. No prospective studies
showing real advantages over
established methods. | | Energy Loss
Index | cm ² /m ² | $EZI = \frac{AVA \cdot AA}{AA - AVA} \bigg/ 888A$ | 0.5 | Equivalent to the concept of
AVA, but correcting for distal
recovered pressure in the
ascending sorta | (As above) Most exact
measurement of AS in terms of
flow-dynamics. Increased
prognostic value in one
longitudinal study. | Introduces complexity and
variability related to the
measurement of the ascending
aorta. | | Valvulo-Arterial
Impedance ¹¹ | mm
Hgimlim ² | $Z_{SS} = \frac{\overline{\Delta P_{mit}} + SBP}{SYT}$ | 5 | Global systolic load imposed
to the LV, where the
numerator represents an
accurate estimation of total
LV pressure | Integrates information on arterial
bead to the hemodynamic burden
of AS, and systemic hyperfension
is a frequent finding in calcific-
degenerative disease. | Although named "impedance",
only the steady-flow componen
(i.e. mean resistance) is
considered. No longitudinal
prospective study available. | | Acrtic Valve
Resistance | dynes/s/on | $AVR = \frac{\overline{M^0}}{\overline{Q}} = \frac{\overline{4 \cdot v^2}}{-v_{DFOF}^2 \cdot v_{DFOF}} \cdot 1333$ | 280 | Resistance to flow caused by
AS, assuming the
hydrodynamics of a tubular
(non flat) stenosis. | Initially suggested to be less flow-
dependent in low-flow AS, but
subsequently shown to not be
true. | Flow dependence.
Limited prognostic value.
Urrealistic mathematic
modelling of flow-dynamics of
AS. | | Projected Valve
Area at Normal
Flow Rate | om ² | $AVA_{pnij} = AVA_{max} + VC \cdot (250 - Q_{max})$ | 1.0 | Estimation of AVA at normal
flow rate by plotting AVA vs.
flow and calculating the slope
of regression (DSE) | Accounts for the variable changes in flow during DSE in low flow low gradient AS, provides improved interpretation of AVA changes | Clinical impact still to be shown
Outcome of low-flow AS
appears closer related to the
presence / absence of LV
contractility reserve. | | Measurement | Units | Formula / Method | Concept | Advantages | Disadvantages | |---|--|--|---|--|--| | Valve area | | | | | | | - planimetry by 2D echo | cms | tracing mitral orifice using
2D echo | direct measurement of
anatomic MVA | - accuracy
- independence from
other factors | experience required not always feasible (poor acoustic window, severe valve calcification) | | - pressure half-time | cm² | 220 / T ₁₂ | rate of decrease of
transmitral flow is inversely
proportional to MVA | easy to obtain | dependence on other factors (AR,
LA compliance, LV diastolic
function) | | - continuity equation | cm² | MVA = (CSA _{LVOT}) (VTI _{Auric}
)/ VTI _{Mitral} | volume flows through mitral and aortic orifices are equal | independence from flow conditions | multiple measurements (sources
of errors) not valid if significant AR or MR | | - PISA | cm ² | MVA = π (r^2)(V _{aluating})/
peak V _{Moral/r} (α / 180°) | MVA assessed by dividing
mitral volume flow by the
maximum velocity of
diastolic mitral flow | independence from flow conditions | technically difficult | | Mean gradient | mm Hg | $\Delta P_{Miral} = 4 v^2_{Miral}$ | pressure gradient calculated
from velocity using the
Bernoulli equation | easy to obtain | dependent on heart rate and flow conditions | | Systolic pulmonary
artery pressure | mm Hg | sPAP = 4v ² _{Tricuspid}
+ RA pressure | addition of RA pressure and
maximum gradient between
RV and RA | obtained in most
patients with MS | - arbitrary estimation of RA pressure
- no estimation of pulmonary
vascular resistance | | Mean gradient and
systolic pulmonary
artery pressure at
exercise | mm Hg | $\Delta P_{Minul} = 4v^2_{Minul}$
$_{S}PAP = 4v^2_{Tricusted}$
+ RA pressure | assessment of gradient and
sPAP for increasing
workload | incremental value in assessment of tolerance | experience required lack of validation for decision-making | | Valve resistance | dyne.
sec ¹ cm ⁻⁶ | $\begin{aligned} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $ | resistance to flow caused by MS | initially suggested to
be less flow-
dependent, but not
confirmed | no prognostic value
no clear threshold for severity
no additional value vs. valve area | #### Findings indicative for hemodynamically significant tricuspid stenosis #### Specific Findings Mean pressure gradient Inflow time velocity integral T½ Valve area by continuity equation* Supportive Findings Enlarged right atrium ≥ moderate Dilated inferior vena cava #### **Pulmonic Stenosis** | | Mild | Moderate | Severe | |-----------------------|------|----------|--------| | Peak Velocity (m/s) | < 3 | 3-4 | >4 | | Peak gradient (mm Hg) | < 36 | 36 to 60 | >60 | Mean Gradient Right ventricular pressure (TR velocity) #### Assessment of valvular regurgitation severity - Qualitative - Valve morphology (flail, caoptation) Color flow jet (size) CW signal of regurgitant jet - Semi-quantitative - VC width - Flow convergence zone size - PW flow pattern: PV (MR), desc. Ao (AR), PA (PR), HV (TR) - CW signal shape (PHT in AR....) - Quantitative - EROA, R Vol (PISA, volumetric) - Secondary signs: LV/RV volume load, atria, PAP #### Quantitative assessment of regurgitation: Volumetric approach #### Proximal Flow Convergence PISA method for quantification of regurgitant flow and effective regurgitant orifice area (EROA), regurgitant volume (R vol) Hemispheric surface = $2 \times r^2 \times \pi$ Regurgitant flow $Q = (2 \times r^2 \times \pi) \times alias$ velocity $(2 \times r^2 \times \pi) \times alias \ velocity = EROA \times MR$ $EROA = \frac{2 \cdot r^2 \cdot \pi \cdot alias \text{ velocity}}{MR \text{ velocity}}$ Regurgitant volume = EROA \times VTI_{MR} Limitations of PISA method: 3) Dynamic changes of the anatomic regurgitant orifice area - decrease in dilated cardiomyopathy - increase in mitral valve prolaps - constant in rheumatic mitral regurgitation **Schwammenthal et al, Circulation 1994* Limitations of PISA metod 5) Movement of the regurgitant orifice Doppler measures the velocity relative to the transducer Regurgitant orifice may be moving away from or towards the transducer | 1 | |---| | | | | | | | | | | | - | I | # | Grading the severity of aortic regurgitation | | | | | | | |---|---|----------------------------|---|--|--|--| | Parameters | Mild | Moderate | Severe | | | | | Qualitative | | | | | | | | Aortic valve morphology | Normal/Abnormal | Normal/Abnormal | Abnormal/flail/large coaptation defect | | | | | Colour flow AR jet width ^a | Small in central jets | Intermediate | Large in central jet, variable in eccentric jets | | | | | CW signal of AR jet | Incomplete/faint | Dense | Dense | | | | | Diastolic flow reversal in descending aorta | Brief, protodiastolic flow reversal | Intermediate | Holodiastolic flow reversal (end-diastolic velocity >20 cm/s) | | | | | Semi-quantitative | | | | | | | | VC width (mm) | <3 | Intermediate | >6 | | | | | Pressure half-time (ms) ^b | >500 | Intermediate | <200 | | | | | Quantitative | | | | | | | | EROA (mm ²) | <10 | 10-19; 20-29 ^c | ≥30 | | | | | R Vol (mL) | <30 | 30-44; 45-59 ^c | ≥60 | | | | | +LV sized | | | | | | | | AR, nortic regargitation; CW, continuous-wave; LA, left arrium; EROA, effective regargitant orifice area; LV, left ventricle; R Vel, regargitant volume; VC, vena contracts. *An a Nyapin limit of 50-60 cm/s. | | | | | | | | ^b PHT is shortened with increasing LV diastolic pres | sure, vasodilator therapy, and in patients w | ith a dilated compliant as | orta or lengthened in chronic AR. | | | | | Grading of the severity of AR classifies reguegitation as mild, moderate or severe and subclassifies the moderate reggritation group into 'mild-to-moderate' (EROA of 10-19 mm or an R Vol of 30-44 ml.) and 'moderate-to-severe' (EROA of 20-29 mm² or an R Vol of 45-59 ml.). | | | | | | | | | 4 Unless for other reasons, the LV size is usually normal in patients with mild AR. In acute severe AR, the LV size is often normal. In chronic severe AR, the LV is classically diluted. Accepted cut-off values for non-significant LV enlargement: LV end-disastice cultured of the consequence | | | | | | | | | | | | | | EAE recommendations 2010 | Parameters | Mild | Moderate | Severe | |---|--|---------------------------|--| | Qualitative | | | | | MV morphology | Normal/Abnormal | Normal/Abnormal | Flail lefleat/Ruptured PMs | | Colour flow MR jet | Small, central | Intermediate | Very large central jet or eccentric jet adhering, swirling and reaching the posterior wall of the LA | | Flow convergence
zone ^a | No or small | Intermediate | Large | | CW signal of MR jet | Faint/Parabolic | Dense/Parabolic | Dense/Triangular | | Semi-quantitative | | | | | VC width (mm) | <3 | Intermediate | ≥7 (>8 for biplane) ^b | | Pulmonary vein flow | Systolic
dominance | Systolic blunting | Systolic flow reversal ^C | | Mitral inflow | A wave dominant ^d | Variable | E wave dominant (>1.5 cm/s) ^e | | TVI mit /TVI Ao | <1 | Intermediate | >1.4 | | Quantitative | | | | | EROA (mm ²) | <20 | 20-29; 30-39 ^f | ≥40 | | R Vol (mL) | <30 | 30-44; 45-59 ^f | ≥60 | | CW, continuous-wave; LA ^a At a Nyquist limit of 50-6 ^b For average between apics ^c Unless other reasons of sy ^d Usually after 50 years of s | 0 cm/s
I four- and two-chamber vi-
nolic bluming (atrial fibrill | iews. | (x_i, V_i) , that versible (x_i, V_i) equipment (x_i, V_i) , experiment volume, (x_i, V_i) vota commuta. | | ⁶ in the absence of other car | ses of elevated LA pressur | e and of mitral stenosis | | | ^f Grading of severity of org
Vol of 30–44 mL) and 'mo | | | or severe, and sub-classifies the moderate regargitation group into 'mild-to-moderate' (EROA of 20 – 29 mm or a R of of 45 – 59 mf.). | | LV size is still often norma | I. In chronic severe MR, th | e LV is classically dilat | usually normal in patients with mild MR. In acute severe MR, the pulmonary pressures are usually clevated while the
ol. Accepted cut-off values for non significant left-sided chambers enlargement: LA volume $c56$ mL/m ² , LV end-
notic distances $c50$ mm. LV and vocabile volume $c50$ m Lm ² . LA distance $c50$ m LA volume $c50$ m Li. $c1$. | | diastelic diameter <56 mm. | LV end-diastolic volume « | | | #### Thank you for your attention # Assessment of Valvular Stenosis Severity CW Doppler: Measurement of transvalvular velocity Calculation of peak gradient $\Delta P_{peak} \, = \, 4 v^2$ Calculation of mean gradient $\Delta P_{mean} = \Sigma 4v^2 / N$ | | _ | _ | | |--|---|---|--|