

Valvular Stenosis and Regurgitation: Assessment of Severity

Helmut Baumgartner

Adult Congenital and Valvular Heart Disease Center University of Muenster Germany

	ropean Jaumel of Echocardiagraphy (2009) 10, 1–25 ::10.1093/ejechocard/jen303	73 pages
5	European Journal of Echocardiography (2010) 11, 223–2- doi:10.1093/ejechocard/jeq030	44 RECOMMENDATIONS
	European Journal of Echocardiography (2010) 1 doi:10.1093/ejechocard/jeg031	11, 207-332 RECOMMENDATIONS
	F A	n of Echocardiography
	recommendations fo	or the assessment of valvular : mitral and tricuspid

Assessment of valvular stenosis severity

- Peak velocity / peak gradient
- Mean gradient

(rest / exercise / dobutamine)

- Valve area planimetry (MS, AS) continuity equation (AS) pressure half-time (MS)
- Indirect signs LVH (AS), RVH (PS) PAP (MS), RVP (PS)

Assessment of Valvular Stenosis Severity

CW Doppler: Measurement of transvalvular velocity

Calculation of peak gradient $\Delta P_{peak} = 4v^2$

Calculation of mean gradient $\Delta P_{mean} = \Sigma 4v^2 / N$

Doppler Assessment of Transvalvular Gradient

Sources of Error

(1) Underestimation of Catheter Gradient:

- Inappropriate recording angle
- Poor signal quality
- Recording "wrong vel." (LVOT)
- Lack of technical expertise or appropriate equipment

_					
_					
_					
_					

Doppler Assessment of Transvalvular Gradient **Sources of Error** (2) Overestimation of Catheter Gradient: • Failure to account for an increased subvalvular velocity Gradient Calculation by CW-Doppler **BERNOULLI EQUATION** $p_1 - p_2 = \frac{1}{2} \rho \left(v_2^2 - v_1^2\right) + \rho \int_1^2 \frac{dv}{dt} ds + R \left(\mu y\right)$ Convective Flow Viscous friction $\Delta p = \frac{1}{2} \rho \left(v_2^2 - v_1^2 \right)$ Doppler Assessment of Transvalvular Gradient **Sources of Error** (2) Overestimation of Catheter Gradient: • Failure to account for an increased subvalvular velocity

• Inappropriate comparison of different gradients

Doppler Assessment of Transvalvular Gradient

Sources of Error

(2) Overestimation of Catheter Gradient:

- Failure to account for an increased subvalvular velocity
- Inappropriate comparison of different gradients
- Recording the wrong velocity (f.e. mitral regurgitation / aortic stenosis)

Recording the Wrong Signal (Aortic Stenosis - Mitral Regurgitation)

Different shape and timing!

Doppler Assessment of Transvalvular Gradient

Sources of Error

(2) Overestimation of Catheter Gradient:

- Failure to account for an increased subvalvular velocity
- Inappropriate comparison of different gradients
- Recording the wrong velocity (f.e. mitral regurgitation / aortic stenosis)
- Nonrepresentative selection of velocity recording (arrhythmias - tendency to select highest velocities)
- Pressure recovery

Pressure Recovery Pressure Pressure Drop Pressure Drop Pressure Drop Turbulent / Viscous Losses

Pressure recovery in aortic stenosis p3 - p2 = $1/2 \rho v^2$. 2AVA/AoA. (1 - AVA/AoA)

	Units	Formula / Method	Cutoff for Severe	Concept	Advantages	Limitations
AS jet velocity	m/s	Direct measurement	4.0	Velocity increases as stenosis severity increase.	Direct measurement of velocity. Strongest predictor of clinical outcome.	Correct measurement requires parallel alignment of ultrasound beam. Flow dependent.
Mean gradient	mm Hg	$\Delta P = \sum 4v^2 / N$	40 or 50	Pressure gradient calculated from velocity using the Bernoulli equation	Mean gradient is averaged from the velocity curve. Units comparable to invasive measurements.	Accurate pressure gradients depend on accurate velocity data. Flow dependent
Continuity equation valve area 16, 17, 23	om²	AVA = (CSA _{LVOT} x VTI _{LVOT})/ VTI _{AV}	1.0	Volume flow proximal to and in the stenotic orifice is equal.	Measures effective orifice area. Feasible in nearly all patients. Relatively flow independent.	Requires LVOT diameter and flow velocity data, along with acrtic velocity. Measurement error more likely.
Simplified continuity equation	cm ²	AVA = (CSA _{LVOT} x V _{LVOT})/ V _{AV}	1.0	The ratio of LVOT to aortic velocity is similar to the ratio of VTIs with native aortic valve stenosis.	Uses more easily measured velocities instead of VTIs.	Less accurate if shape of velocity curves is atypical.
Velocity Ratio	none	VR = Wage Vau	0.25	Effective acrtic valve area expressed as a proportion of the LVOT area.	Doppler-only method. No need to measure LVOT size, less variability than continuity equation.	Limited longitudinal data. Ignores LVOT size variability beyond patient size dependence
Planimetry of Anatomic Valve Area 31.14	om²	TTE, TEE, 30-echo	1.0	Anatomic (geometric) cross- sectional area of the acrtic valve crifice as measured by 2D or 3D echo.	Useful if Doppler measurements are unavailable.	Contraction coefficient (anatomic / effective valve area may be variable. Difficult with severe valve calcification.
LV % Stroke Work Loss	%	$^{9}kSWZ = \frac{\overline{\Delta P}}{\overline{\Delta P} + SBP} \cdot 100$	25	Work of the LV wasted each systole for flow to cross the aortic valve, expressed as a % of total systolic work	Very easy to measure. Related to outcome in one longitudinal study.	Flow-dependent, Limited longitudinal data
Recovered Pressure Gradient	mm Hg	$P_{dind} - P_{rr} = 4 \cdot \mathbf{v}^2 \cdot 2 \cdot \frac{AYA}{AA} \left(1 - \frac{AYA}{AA} \right)$		Pressure difference between the LV and the acrts, slightly distal to the vena contracts, where distal pressure has increased.	Closer to the global hemodynamic burden caused by AS in terms of adaptation of the cardiovascular system. Relevant at high flow states and in patients with small ascending acrts.	Introduces complexity and variability related to the measurement of the ascending aorta. No prospective studies showing real advantages over established methods.
Energy Loss Index	cm ² /m ²	$EZI = \frac{AVA \cdot AA}{AA - AVA} \bigg/ 888A$	0.5	Equivalent to the concept of AVA, but correcting for distal recovered pressure in the ascending sorta	(As above) Most exact measurement of AS in terms of flow-dynamics. Increased prognostic value in one longitudinal study.	Introduces complexity and variability related to the measurement of the ascending aorta.
Valvulo-Arterial Impedance ¹¹	mm Hgimlim ²	$Z_{SS} = \frac{\overline{\Delta P_{mit}} + SBP}{SYT}$	5	Global systolic load imposed to the LV, where the numerator represents an accurate estimation of total LV pressure	Integrates information on arterial bead to the hemodynamic burden of AS, and systemic hyperfension is a frequent finding in calcific- degenerative disease.	Although named "impedance", only the steady-flow componen (i.e. mean resistance) is considered. No longitudinal prospective study available.
Acrtic Valve Resistance	dynes/s/on	$AVR = \frac{\overline{M^0}}{\overline{Q}} = \frac{\overline{4 \cdot v^2}}{-v_{DFOF}^2 \cdot v_{DFOF}} \cdot 1333$	280	Resistance to flow caused by AS, assuming the hydrodynamics of a tubular (non flat) stenosis.	Initially suggested to be less flow- dependent in low-flow AS, but subsequently shown to not be true.	Flow dependence. Limited prognostic value. Urrealistic mathematic modelling of flow-dynamics of AS.
Projected Valve Area at Normal Flow Rate	om ²	$AVA_{pnij} = AVA_{max} + VC \cdot (250 - Q_{max})$	1.0	Estimation of AVA at normal flow rate by plotting AVA vs. flow and calculating the slope of regression (DSE)	Accounts for the variable changes in flow during DSE in low flow low gradient AS, provides improved interpretation of AVA changes	Clinical impact still to be shown Outcome of low-flow AS appears closer related to the presence / absence of LV contractility reserve.

Measurement	Units	Formula / Method	Concept	Advantages	Disadvantages
Valve area					
- planimetry by 2D echo	cms	tracing mitral orifice using 2D echo	direct measurement of anatomic MVA	- accuracy - independence from other factors	experience required not always feasible (poor acoustic window, severe valve calcification)
- pressure half-time	cm²	220 / T ₁₂	rate of decrease of transmitral flow is inversely proportional to MVA	easy to obtain	dependence on other factors (AR, LA compliance, LV diastolic function)
- continuity equation	cm²	MVA = (CSA _{LVOT}) (VTI _{Auric})/ VTI _{Mitral}	volume flows through mitral and aortic orifices are equal	independence from flow conditions	multiple measurements (sources of errors) not valid if significant AR or MR
- PISA	cm ²	MVA = π (r^2)(V _{aluating})/ peak V _{Moral/r} (α / 180°)	MVA assessed by dividing mitral volume flow by the maximum velocity of diastolic mitral flow	independence from flow conditions	technically difficult
Mean gradient	mm Hg	$\Delta P_{Miral} = 4 v^2_{Miral}$	pressure gradient calculated from velocity using the Bernoulli equation	easy to obtain	dependent on heart rate and flow conditions
Systolic pulmonary artery pressure	mm Hg	sPAP = 4v ² _{Tricuspid} + RA pressure	addition of RA pressure and maximum gradient between RV and RA	obtained in most patients with MS	- arbitrary estimation of RA pressure - no estimation of pulmonary vascular resistance
Mean gradient and systolic pulmonary artery pressure at exercise	mm Hg	$\Delta P_{Minul} = 4v^2_{Minul}$ $_{S}PAP = 4v^2_{Tricusted}$ + RA pressure	assessment of gradient and sPAP for increasing workload	incremental value in assessment of tolerance	experience required lack of validation for decision-making
Valve resistance	dyne. sec ¹ cm ⁻⁶	$\begin{aligned} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	resistance to flow caused by MS	initially suggested to be less flow- dependent, but not confirmed	no prognostic value no clear threshold for severity no additional value vs. valve area

Findings indicative for hemodynamically significant tricuspid stenosis

Specific Findings Mean pressure gradient Inflow time velocity integral T½ Valve area by continuity equation*

Supportive Findings
Enlarged right atrium ≥ moderate
Dilated inferior vena cava

Pulmonic Stenosis

	Mild	Moderate	Severe
Peak Velocity (m/s)	< 3	3-4	>4
Peak gradient (mm Hg)	< 36	36 to 60	>60

Mean Gradient Right ventricular pressure (TR velocity)

Assessment of valvular regurgitation severity

- Qualitative
 - Valve morphology (flail, caoptation) Color flow jet (size) CW signal of regurgitant jet
- Semi-quantitative
 - VC width
 - Flow convergence zone size
 - PW flow pattern: PV (MR), desc. Ao (AR), PA (PR), HV (TR)
 - CW signal shape (PHT in AR....)
- Quantitative
 - EROA, R Vol (PISA, volumetric)
- Secondary signs: LV/RV volume load, atria, PAP

Quantitative assessment of regurgitation: Volumetric approach

Proximal Flow Convergence

PISA method for quantification of regurgitant flow and effective regurgitant orifice area (EROA), regurgitant volume (R vol)

Hemispheric surface = $2 \times r^2 \times \pi$

Regurgitant flow $Q = (2 \times r^2 \times \pi) \times alias$ velocity

 $(2 \times r^2 \times \pi) \times alias \ velocity = EROA \times MR$

 $EROA = \frac{2 \cdot r^2 \cdot \pi \cdot alias \text{ velocity}}{MR \text{ velocity}}$

Regurgitant volume = EROA \times VTI_{MR}

Limitations of PISA method:

3) Dynamic changes of the anatomic regurgitant orifice area

- decrease in dilated cardiomyopathy
- increase in mitral valve prolaps
- constant in rheumatic mitral regurgitation

**Schwammenthal et al, Circulation 1994*

Limitations of PISA metod

5) Movement of the regurgitant orifice

Doppler measures the velocity relative to the transducer

Regurgitant orifice may be moving away from or towards the transducer

1
-
I

Grading the severity of aortic regurgitation						
Parameters	Mild	Moderate	Severe			
Qualitative						
Aortic valve morphology	Normal/Abnormal	Normal/Abnormal	Abnormal/flail/large coaptation defect			
Colour flow AR jet width ^a	Small in central jets	Intermediate	Large in central jet, variable in eccentric jets			
CW signal of AR jet	Incomplete/faint	Dense	Dense			
Diastolic flow reversal in descending aorta	Brief, protodiastolic flow reversal	Intermediate	Holodiastolic flow reversal (end-diastolic velocity >20 cm/s)			
Semi-quantitative						
VC width (mm)	<3	Intermediate	>6			
Pressure half-time (ms) ^b	>500	Intermediate	<200			
Quantitative						
EROA (mm ²)	<10	10-19; 20-29 ^c	≥30			
R Vol (mL)	<30	30-44; 45-59 ^c	≥60			
+LV sized						
AR, nortic regargitation; CW, continuous-wave; LA, left arrium; EROA, effective regargitant orifice area; LV, left ventricle; R Vel, regargitant volume; VC, vena contracts. *An a Nyapin limit of 50-60 cm/s.						
^b PHT is shortened with increasing LV diastolic pres	sure, vasodilator therapy, and in patients w	ith a dilated compliant as	orta or lengthened in chronic AR.			
Grading of the severity of AR classifies reguegitation as mild, moderate or severe and subclassifies the moderate reggritation group into 'mild-to-moderate' (EROA of 10-19 mm or an R Vol of 30-44 ml.) and 'moderate-to-severe' (EROA of 20-29 mm² or an R Vol of 45-59 ml.).						
	4 Unless for other reasons, the LV size is usually normal in patients with mild AR. In acute severe AR, the LV size is often normal. In chronic severe AR, the LV is classically diluted. Accepted cut-off values for non-significant LV enlargement: LV end-disastice cultured of the consequence of the					

EAE recommendations 2010

Parameters	Mild	Moderate	Severe
Qualitative			
MV morphology	Normal/Abnormal	Normal/Abnormal	Flail lefleat/Ruptured PMs
Colour flow MR jet	Small, central	Intermediate	Very large central jet or eccentric jet adhering, swirling and reaching the posterior wall of the LA
Flow convergence zone ^a	No or small	Intermediate	Large
CW signal of MR jet	Faint/Parabolic	Dense/Parabolic	Dense/Triangular
Semi-quantitative			
VC width (mm)	<3	Intermediate	≥7 (>8 for biplane) ^b
Pulmonary vein flow	Systolic dominance	Systolic blunting	Systolic flow reversal ^C
Mitral inflow	A wave dominant ^d	Variable	E wave dominant (>1.5 cm/s) ^e
TVI mit /TVI Ao	<1	Intermediate	>1.4
Quantitative			
EROA (mm ²)	<20	20-29; 30-39 ^f	≥40
R Vol (mL)	<30	30-44; 45-59 ^f	≥60
CW, continuous-wave; LA ^a At a Nyquist limit of 50-6 ^b For average between apics ^c Unless other reasons of sy ^d Usually after 50 years of s	0 cm/s I four- and two-chamber vi- nolic bluming (atrial fibrill	iews.	(x_i, V_i) , that versible (x_i, V_i) equipment (x_i, V_i) , experiment volume, (x_i, V_i) vota commuta.
⁶ in the absence of other car	ses of elevated LA pressur	e and of mitral stenosis	
^f Grading of severity of org Vol of 30–44 mL) and 'mo			or severe, and sub-classifies the moderate regargitation group into 'mild-to-moderate' (EROA of 20 – 29 mm or a R of of 45 – 59 mf.).
LV size is still often norma	I. In chronic severe MR, th	e LV is classically dilat	usually normal in patients with mild MR. In acute severe MR, the pulmonary pressures are usually clevated while the ol. Accepted cut-off values for non significant left-sided chambers enlargement: LA volume $c56$ mL/m ² , LV end- notic distances $c50$ mm. LV and vocabile volume $c50$ m Lm ² . LA distance $c50$ m LA volume $c50$ m Li. $c1$.
diastelic diameter <56 mm.	LV end-diastolic volume «		

Thank you for your attention

Assessment of Valvular Stenosis Severity

CW Doppler: Measurement of transvalvular velocity

Calculation of peak gradient $\Delta P_{peak} \, = \, 4 v^2$

Calculation of mean gradient $\Delta P_{mean} = \Sigma 4v^2 / N$

	_	_	

